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Abstract. We have computed the Raman scattering intensity for very large bond-percolating
clusters and diffusion-limited cluster–cluster aggregates in three dimensions. Using the spectral
moments method, we considered both scalar and bond-bending potentials to model interactions
between atoms of our fractal systems. We assumed that scattering was produced either by the
dipole-induced dipole (DID) or by the bond-polarizability mechanisms. The results have been
analysed in terms of the light scattering scaling theory and compared with the experimental
Raman scattering data obtained for silica aerogels. We found that the DID mechanism applied
to the diffusion-limited cluster–cluster aggregation model gives a good description of the Raman
scattering in base-catalysed silica aerogels.

1. Introduction

In recent years, there had been growing interest in the dynamic properties of porous media.
This was stimulated by theoretical work on vibrational excitations in fractal structures
(Alexander and Orbach 1982). These investigations revealed that vibrational excitations
of weakly connected fractal systems consist of localized low-energy modes, called fractons.
Their density of states (DOS)g(ω) was assumed to scale with the frequencyω as

g(ω) ∼ ωd̃−1 (1)

where the spectral dimensioñd differs from the Euclidean dimensiond. The fractons are
characterized by a length scaleλ related toω, D and d̃ by

λ(ω) ∼ ω−d̃/D. (2)

The first measurements of the low-frequency Raman scattering intensity for silica
aerogels were obtained by Boukenteret al (1986, 1987). Interaction of fractons with light
gives rise to a Raman scattering intensity, assumed to be written as

I (ω)

n(ω)+ 1
= C(ω)g(ω)

ω
∼ ων (3)
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whereC(ω) describes the coupling between vibrational modes and photons,n(ω) is the
Bose factor andν is a scaling index. They analysed their results, assuming the ensemble-
averaged form for the fracton wavefunctions introduced by Alexanderet al (1985), which
is generally incorrect (Keys and Ohtsuki 1987).

To detect fractons, several experiments have been carried out on silica aerogels (Courtens
et al 1987, 1988, Tsujimiet al 1988, Vacheret al 1988, 1990, Pelouset al 1992). The very-
low frequency inelastic polarized and depolarized scattering of light from vibrations of these
systems was studied and the results analysed on the basis of scaling considerations based on
the fracton model. Pelouset al (1992) observed that two domains can be distinguished in a
broad frequency domain around the lowest-frequency Raman-active modes (about 10 cm−1)
of the silica aerogel particles. At very low frequencies (much less than 10 cm−1), they
observed a regime withν-values varying between−0.4 and−0.8, depending on the catalysis
conditions of the aerogel preparation. On the other hand, in the 100–150 cm−1 range, a
coefficientν > +0.3 has been obtained. The physical origin of these modes is still a matter
of discussion.

These experiments have stimulated further theoretical developments. In particular, a
general analysis of light scattering from fractals has been developed on the basis of scaling
assumptions (Alexander 1989, Alexander, Courtens and Vacher (ACV) 1993). In these
studies, it is postulated that all average lengths that can be defined on fractons, either
wavelength, scattering length or localization length, scale with the fracton frequency as
in equation (2). In other words all these lengths are the same apart from numerical
constants. This statement is called the single-length-scale postulate (SLSP). To interpret
the experimental results obtained for silica aerogels, several mechanisms which can lead to
light scattering have been proposed: the direct mechanism which is related to the change in
mass distribution in the fracton regime, the dipole-induced dipole (DID) mechanism which
takes care of dipolar radiation, and the Pockel effect which expresses the fluctuations in the
particle polarizabilities due to strains in these particles.

To check the scaling indices entering this light theory, many computed experiments have
been carried out. Montagnaet al (1990), Pillaet al (1992) and Mazzacuratiet al (1992) have
numerically calculated polarized Raman scattering for the DID effective polarizability model
of the site-percolating (SP) cluster built on 65× 65 lattices ford = 2, and on 29× 29× 29
lattices ford = 3. Their results suggest that the theoretical predictions of ACV are not
valid. Stoll et al (1992) have computed the Raman coupling coefficientC(ω) for the DID
scattering process for SP and bond-percolating (BP) clusters in two and three dimensions.
Their results concerning BP clusters revealed that the scattering is extremely sensitive to
granularity and their computed scaling exponents support the theoretical predictions. A very
different scaling was observed in the case of SP clusters (Montagnaet al 1990, Stollet
al 1992). In order to clarify these discrepancies, Vilianiet al (1995) have calculated the
Raman scattering coupling coefficientC(ω) for both SP and BP systems in two and three
dimensions. Their results disagree with the scaling theory. In agreement with equation (7),
Terao and Nakayama (1996) found that, for BP networks in three dimensions, the Raman
scattering intensity follows a power law with the exponentσ close to unity. Benoitet al
(1992b) have calculated the Raman intensity of a disordered Sierpinski gasket. The results
confirm that, in the fracton regime, the Raman intensity behaves according to a power law,
and the value of the exponentν depends on the susceptibility derivatives.

The aim of this paper is twofold: first, we study, for several structures and force
field models, the scaling behaviour of light scattering for the DID and bond-polarizability
(BPOL) mechanisms; second, we try to interpret the experimental results concerning Raman
scattering from silica aerogels at the light of the vectorial elasticity model. We have studied
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polarized and depolarized light scattering from percolating clusters and diffusion-limited
cluster–cluster aggregates (DLCAs) built ind = 3 (Hasmyet al 1994). Both scalar and
three-body forces are considered. In the following, we first review the scaling arguments
and different processes of light scattering. We then present the dynamic models that we
used, and finally we discuss the results obtained.

2. Scaling arguments

The first analysis of the experimental Raman scattering results obtained for silica aerogels
were based on an ensemble-averaged form for the fracton wavefunctions. Indeed, Alexander
et al (1985, 1986) assume that the amplitude of the normalized wavefunction associated
with a fracton of frequencyω and located at a distancer has the following form:

8(ω, r) ∼ λ−D/2 exp[− 1
2(r/λ)

dφ ] (4)

where λ is the localization length, which obeys equation (2), anddφ is a geometrical
exponent describing the localization in real space.

Considering that the local strain induced by the fractonω is proportional to the gradient
of the wavefunction8, the reduced intensity of light scattered at a point by a fracton
localized at a distancer obeys equation (3), with

ν = d̃

D
(2dφ +D)− 2. (5)

The validity of this analysis was criticized by Keys and Ohtsuki (1987). To avoid
errors induced by the ensemble-averaged form of the wavefunction idea, Alexanderet al
(1993) have developed a general formalism for light scattering from fractals. Based on the
SLSP, they found that the intensity scales withω, with indices that depend on the assumed
scattering mechanism.

In the light scattering experiment, the incident electric fieldEi creates a polarization
P (r, t), given by

P (r, t) ∼ χ̃Ei (r, t) (6)

where χ̃ is the dielectric susceptibility tensor. The scattering intensity depends on the
fluctuationsδP of the polarization.

2.1. Direct mechanism

The particles are rigid. Polarization fluctuations are due to density fluctuations. The
scattering intensity is thus directly proportional to the correlation function or the dynamic
structure factor which was considered in previous studies (Rahmaniet al 1995, 1996). The
intensity defined in equation (3) must follow, in theqλ � 1 limit, the following scaling
relation:

Idir (ω)

n(ω)+ 1
∼ ω−2d̃(2−σ)/D−2 (7)

where σ is a scaling index describing the modulation of the mass distribution by the
vibration.
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2.2. Dipole-induced dipole mechanism

The polarization of neighbouring particles gives rise to an internal fieldEind at a given
particle in addition to the average macroscopic fieldEi .

In this approach, the local field in each particle forming the material is then given by

Eloc = Ei +Eind (8)

whereEind is the field due to all the mean dipole momentsPn induced directly by the field
Ei in each particlen. Particle displacements involve the polarization fluctuationsδPind ,
which is taken to be proportional to the induced field (Montagnaet al 1990):

δPind(rn, t) ∼ χn δEind(rn, t) (9)

with

δEind(rn, t) = δ
(∑

n′
T̃(r(t)nn′)Pn(r′n, t)

)
(10)

with the dipolar interaction tensor given by

T̃(r) = [r ⊗ r − 1
31r2]/r5. (11)

δEind(rn, t) represents fluctuations of the created field at a pointrn by the average dipole
momentPn′ located at a pointrn′ . Hence, if we assume that the polarizability of particles
is constant, the polarization fluctuations can be written as

δPind(rn, t) = δπ̃n ·Ei (rn′ , t) (12)

where the components of the tensor polarizabilityπ̃n are defined by

πnαγ (t) =
∑
n′
χnχn′Tαγ (rnn′(t)). (13)

As shown by Alexanderet al (1993), one can distinguish the high-frequency limit
(qλ� 1), where the long-range coherence of the strains is important, and the low-frequency
limit (qλ� 1), which is dominated by short-range dipolar coupling and by the fluctuating
local strains.

In the qλ � 1, one can show that the long-range contribution of the DID (LRDID)
mechanism to intensity would follow the power law (equation (3))

ILRDID(ω)

n(ω)+ 1
∼ ω−2d̃(D−d−σ)/D−2. (14)

The DID mechanism, truncated to nearest neighbours (NNDID), gives rise to an
incoherent contribution which complies with the scaling

INNDID(ω)

n(ω)+ 1
∼ ω2d̃σ/D+d̃−2. (15)

The exponentσ in this latter equation can differ from theσ in equation (14) and can
take a value smaller than one. The polarizability tensor is given by

πnαγ (t) =
∑
n′〈nn〉

χnχn′Tαγ (rnn′(t)) (16)

where〈nn〉 indicates thatn andn′ are nearest neighbours.
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If we consider that this polarization is only modulated if the nearest neighbours are
connected by a bond, one obtains the BPOL contribution. The tensor polarizability is then
given by

πnαγ (t) =
∑
n′〈nn〉

Knn′Tαγ (rnn′(t)) (17)

whereKnn′ = 1, if n andn′ are connected, andKnn′ = 0 otherwise. The BPOL contribution
is identical with the NNDID contribution for SP and DLCA models.

3. Models

3.1. Light scattering

The scattered light in a given direction, with a frequency betweenωf andωf + dωf and
a solid angle d�, is related to the differential scattering cross section, which is given by
Poussigueet al (1991), withq ≈ 0:

d2σ

d� dωf
= 1

8π2c2
ω3
f ωi(n(ω)+ 1)h̄

∑
i

∑
αγβλ

niαn
i
βHαγβλ(ω)lγ lλ (18)

where

Hαγβλ(ω) =
∑
j

a∗αγ (j)aβλ(j)
1

2ωj
[δ(ω − ωj)− δ(ω + ωj)] (19)

with

aαγ (j) =
∑
mδ

πmαγ,δ√
mm

ej (mδ). (20)

ωi is the frequency of the incident light,ni (i = 1, 2) andl are the polarization unit vectors
for scattered and incident light, respectively;n1 andn2 are two mutually perpendicular unit
vectors that are both perpendicular to the direction of propagation of the light,mn is the
mass of thenth atom andej (nδ) is the (nδ) component of thej th mode. Coefficientsπmαγ,δ
connect the polarization fluctuations to particle motions. They are obtained by expanding
the polarizability tensor̃πn in terms of particle displacementsuδm, with

πmαγ,β =
∑
n

(
∂πnαγ

∂uδm

)
0

(21)

where πnαγ are given by equations (13), (16) and (17) for DID, NNDID and BPOL
mechanisms, respectively. The polarized Raman scattering corresponds, for example, to
Ei = |Ei |x andn1//x (α = β = γ = λ = 1 in equation (18)). Depolarized Raman
scattering is obtained withn2//y ⊥ x (α = β = 2; γ = λ = 1).

Using the spectral moments method (Benoitet al 1992a), we calculate a symmetrical
function Iαγ (ω)/(n(ω)+ 1), which is equal, apart from a constant factor, to the differential
scattering cross section (18), forω > 0:

Iαγ (ω)

n(ω)+ 1
=
∑
j

|aαγ (j)|2
2ωj

(δ(ω − ωj)+ δ(ω + ωj))

=
∑
j

|aαγ (j)|2δ(ω2− ω2
j ).

(22)
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3.2. Dynamic models

In this paper, we consider two models: scalar and vectorial models. In the vectorial model,
the potential takes into account vector displacements, and is given by (Feng, 1985a, b)

V = 1
2α
∑
〈nm〉

[(un − um) · rnm]2Knm + 1
2β

∑
〈mnl〉

(δθmnl)
2KnmKnl (23)

whereα andβ are the central and the bond-bending force constants, respectively,un is the
(infinitesimal) displacement of siten andrnm is a unit vector from siten to sitem. Knm
is a bond parameter betweenn andm, whereKnm = 1 if both sidesn andm are occupied
by atoms and otherwiseKnm = 0. 〈mnl〉 indicates that the sum is over all triplets in which
the bonds〈mn〉 and〈nl〉 form an angle whose vertex is atn, andδθmnl is the small change
in angle between bonds〈nm〉 and 〈nl〉 due to the atom displacements. If the bending of
collinear bonds, i.e. bonds that are 180◦ to one another, is also allowed, then (Sahimi and
Arbabi 1993)

δθmnl =
{
(unm × rnm − unl × rnl) · (rnm × rnl)/|rnm × rnl| rnm not parallel tornl
|(unm + une)× rnm| rnm parallel tornl

(24)

whereunm = un − um. We now report the results obtained for light scattering with these
models.

4. Numerical results

As mentioned above, several studies have been carried out to find a scaling law for Raman
scattering in fractals. We propose a very large simulation of the Raman scattering for three-
dimensional (3D) BP networks and 3D DLCAs. Assuming that the scattering DID and
BPOL mechanisms are involved, we consider that atoms first interact via the scalar model
and secondly via the bond-bending interacting model. We note that all figures below are
plotted on the decimal log–log scale.

4.1. Scalar model

In figure 1, we report, polarized DID (xx-DID), depolarized DID (xy-DID) and BPOL
spectra for a 3D BP system atpc = 0.248. The linear size of the system isL = 85
and the number of sites is 226 940. We observe a power-law dependence with exponents
ν = −0.41±0.02, ν = −0.45±0.02 andν = 0.95±0.02 for xx-DID, xy-DID and BPOL,
respectively (table 1)

In figures 2(a), 2(b) and 2(c), we presentxx-DID, xy-DID and BPOL spectra
respectively, for three 3D DLCA samples; these three samples, denoted samples A-DLCA,
B-DLCA and C-DLCA have concentrationsc = 0.050, c = 0.075 and c = 0.150,
respectively. The linear size of the clusters isL = 100. We see that, for the three cases, the
low-frequency Raman intensity follows a nice power law with an exponent depending on
the concentrations for the DID mechanism (table 1). The exponentν varies from 0.45 (0.26)
to 0.52 (0.37) when the concentration increases from 0.05 to 0.15 forxx-DID (xy-DID). In
the case of the BPOL mechanism, the exponentν is equal to 0.77 for samples A-DLCA,
B-DLCA and C-DLCA samples.
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Figure 1. Log–log plot of Raman scattering intensityI (ω)/[n(ω) + 1] versusω for the 3D
BP system with scalar elasticity for the DID and BPOL mechanisms: ————◦ , xx-DID;
————× , xy-DID; ————� , BPOL. The straight lines are fits with the indicated slopes.

Table 1. The exponentν, deduced from the spectrum, in the case of the scalar model for BP
and DLCA models using DID and BPOL mechanisms.

ν

Model xx-DID xy-DID BPOL

BP −0.41± 0.02 −0.45± 0.02 0.95± 0.02
A-DLCA 0.52± 0.02 0.37± 0.02 0.77± 0.02
B-DLCA 0.47± 0.02 0.33± 0.02 0.77± 0.02
C-DLCA 0.45± 0.02 0.26± 0.02 0.77± 0.02

4.2. Tensorial model

In earlier studies (Feng 1985a, b, Yakubo and Nakayama 1990), it was found that for the
percolating networks model, with rotationally invariant elastic forces, there was a crossover
length scalelc, which depended on the relative strength of the microscopic bond-stretching
and bond-bending elastic force constants. For lengthl > lc, the vibrational DOS of fractons
is governed by a spectral dimensioñD ≈ 0.8–0.9 (equation (1)). For lengthl < lc, the
bond-stretching motion would be dominant and the DOS fractons are characterized by the
conjectured valuẽd = 4/3.

To take into account the vector nature of the realistic systems, we consider the potential
defined in equation (23). Before presenting the Raman scattering results obtained for 3D
BP and 3D DLCA systems, we report the DOSs obtained for these systems. In figures 3(a)
and 3(b) we show the results for the DOS spectra for the BP system atp = pc and for
the DLCA at c = 0.075 (sample B-DLCA), respectively. The ratioβ/α takes the values
0.01 (open circles), 0.10 (open squares) and 1.00 (open triangles). The straight lines, for
β/α = 0.01, in the low-frequency region of the spectra, indicate the slopes 0.00 and−0.10
for the BP and DLCA systems, respectively.
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Figure 2. Log–log plot of Raman scattering intensityI (ω)/[n(ω) + 1] versusω for the three
aggregates A-DLCA (c = 0.05) (◦), B-DLCA (c = 0.075) (�) and C-DLCA (c = 0.15) (M) for
scalar elasticity: (a) xx-DID; (b) xy-DID; (c) BPOL. The straight lines are fits with indicated
slopes.
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Figure 3. Log–log plot of DOSg(ω) versusω/ωmax for the (a) BP and (b) the B-DLCA
systems for tensorial elasticity for the ratioβ/α = 0.01 (◦), 0.10 (�) and 1.00 (M). ωmax is
the maximal frequency of the spectra. The straight lines are fits with the indicated slopes.

The corresponding values of the bond-bending fracton dimension areD̃ ≈ 1.0 for
percolating systems and̃D ≈ 0.9 for the DLCA. These values agree with the predicted
valueD̃ ≈ 0.8–0.9.

In figure 4, we report the Raman scattering intensity spectra obtained for BP systems
for different values of the ratioβ/α : 0.01 (◦), 0.10 (�) and 1.00 (M). Figures 4(a) and
4(b) show the results for thexx-DID and xy-DID mechanisms, respectively. We observe
that for β/α = 0.01, for which the bond-bending forces are dominant, Raman scattering
follows a power law with exponentsν = −1.03± 0.02 (xx-DID) and ν = −0.93± 0.02
(xy-DID). Figure 4(c) shows the results obtained with the BPOL mechanism, for the two
valuesβ/α = 0.01 and 0.10, open symbols forxx-BPOL and full symbols forxy-BPOL.
The scaling behaviour appears only in the case ofxx-BPOL with a scaling exponent
ν = −1.35± 0.02.

In figures 5–7, we have plotted the spectra of the Raman scattering intensity for samples
A-DLCA, B-DLCA and C-DLCA, respectively. In the case of DID, for each sample,
the results for polarized and depolarized spectra are given for three values of the ratio
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Figure 4. Log–log plot of Raman scattering intensityI (ω)/[n(ω) + 1] versusω/ωmax for the
3D BP system for tensorial elasticity forβ/α = 0.01 (◦, •), 0.10 (�, �) and 1.00 (M):
(a) xx-DID; (b) xy-DID; (c) xx-BPOL (◦, �) and xy-BPOL (•, �). ωmax is the maximal
frequency of the spectra. The straight lines are fits with the indicated slopes.



Light scattering in fractals 2159

Figure 5. Log–log plot of Raman scattering intensityI (ω)/[n(ω) + 1] versusω/ωmax for the
A-DLCA system for tensorial elasticity forβ/α = 0.01 (◦, •), 0.10 (�, �) and 1.00 (M):
(a) xx-DID; (b) xy-DID; (c) xx-BPOL (◦, �) and xy-BPOL (•, �). ωmax is the maximal
frequency of the spectra. The straight lines are fits with the indicated slopes.
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Figure 6. Log–log plot of Raman scattering intensityI (ω)/[n(ω) + 1] versusω/ωmax for the
B-DLCA system for tensorial elasticity forβ/α = 0.01 (◦, •), 0.10 (�, �) and 1.00 (M):
(a) xx-DID; (b) xy-DID; (c) xx-BPOL (◦, �) and xy-BPOL (•, �). ωmax is the maximal
frequency of the spectra. The straight lines are fits with the indicated slopes.
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Figure 7. Log–log plot of Raman scattering intensityI (ω)/[n(ω) + 1] versusω/ωmax for the
C-DLCA system for tensorial elasticity forβ/α = 0.01 (◦, •), 0.10 (�, �) and 1.00 (M):
(a) xx-DID; (b) xy-DID; (c) xx-BPOL (◦, �) and xy-BPOL (•, �). ωmax is the maximal
frequency of the spectra. The straight lines are fits with the indicated slopes.
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β/α = 0.01 (circles), 0.1 (squares) and 1.0 (triangles). In the case of the BPOL mechanism,
the results for polarized (open symbols) and depolarized spectra (full symbols) are given for
the valuesβ/α = 0.01 (circles) and 0.1 (squares). We observe that the scattering intensity
exhibits scaling in a low-frequency region for the two mechanisms DID and BPOL. In
table 2, we report the scaling exponents characterizing the low-frequency regime of scattered
intensity, withβ/α = 0.01, for the BP and A-DLCA, B-DLCA and C-DLCA systems in
the cases of polarized (depolarized) DID and BPOL mechanisms. These exponents are the
slopes of the straight lines indicated in figures 5–7. For example, for sample B-DLCA,
we obtain exponentsν = −1.01± 0.02 for xx-DID, ν = −0.80± 0.02 for xy-DID,
ν = 1.33± 0.02 for xx-BPOL andν = −0.34± 0.02 for xy-BPOL.

Table 2. The exponentν, deduced from the spectrum, with the ratioβ/α = 0.01, in the case of
the BP and DLCA vectorial models using DID and BPOL mechanisms.

ν

Model xx-DID xy-DID xx-BPOL xy-BPOL

BP −1.03± 0.02 −0.93± 0.02 1.35± 0.02
A-DLCA −0.91± 0.02 −0.79± 0.02 1.35± 0.02 −0.40± 0.02
B-DLCA −1.01± 0.02 −0.80± 0.02 1.33± 0.02 −0.34± 0.02
C-DLCA −1.01± 0.02 −0.79± 0.02 1.29± 0.02 −0.28± 0.02

5. Discussion

5.1. Scalar model

For BP networks, we observe that, for both BPOL and DID mechanisms, the polarized and
depolarized spectra are quite similar. Calculations of the scattering produced by the DID
mechanism in BP networks revealed that, when the coherent strain was found to dominate,
the Raman scattering intensity follows the scaling law (14), as predicted by Alexanderet al
(1993). From (14), one deduces, fromxx-DID and xy-DID spectra, respectively, that the
exponentσ is close to unity. Values obtained for the slopes are in agreement with those
(with m = ν − d̃ + 2) obtained by Vilianiet al (1995). Concerning the BPOL mechanism,
the slopes are the same for both polarizations and also in agreement with those obtained by
Viliani et al (1995).

With DLCAs, we observe that, for the DID mechanism, the slopes are different for
the polarized and depolarized spectra and decrease as the concentration increases. On the
other hand, it has been shown that the fractal dimension, spectral dimension and slopes
of correlation functions in DLCA systems are identical for the three samples (Rahmaniet
al 1996). So, as the concentration increases, we observe a relative increase in the Raman
‘inelastic structure factor’aαγ (j) of the low-frequency modes. In fact, this factor depends on
the real positions of all atoms which are different in the three samples. Furthermore, when
comparing our results for DLCAs with equation (14), we deduce an exponentσ ≈ 0.50
(xx-DID) and σ ≈ 0.39 (xy-DID), which is extremely small and in disagreement with the
scaling theory on Raman scattering given by Alexanderet al (1993). Concerning the BPOL
mechanism, the slopes are nearly independent of the concentration and are almost the same
for both polarizations. With this mechanism, it is possible to compare our numerical results
for DLCAs with equation (15). The slope in figure 2(c) gives ν ≈ 0.77. One can thus
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deduce thatσ ≈ 1.04 in this case. This value is close to the value of the exponentdφ ≈ 1.0
found in the experimental Raman scattering of some silica gels (Boukenteret al 1986).

Moreover, comparing our DID numerical results obtained for DLCAs with the
experimental data on silica aerogels, we observe that, in the case of the scalar model,
the Raman scattering intensity scales with an exponentν ≈ 0.26–0.52. These values are
consistent with the measured values in the 100–150 cm−1 range of the Raman spectra for
these systems. We also note that the concentration-dependent variation on the exponentν

(table 2) is in agreement with experiments (Champagnonet al 1987).

5.2. Tensorial model

For BP networks, the behaviours of polarized and depolarized spectra produced by the DID
mechanism are quite similar (ν(xx-DID) = −1.03± 0.02; ν(xy-DID) = −0.93± 0.02). It
is obvious that we cannot compare our results with the formulae proposed by Alexanderet
al (1993) since it is difficult to establish the required scaling law.

With the DLCA system, we observe that, for the DID mechanism, slopes are slightly
different for the polarized and depolarized spectra. For thexx-polarization, the slopes
decrease as the concentration increases and are constant for thexy polarization. Note that,
in contrast with the scalar models, the slopes are close to values obtained with BP networks.
Concerning the BPOL mechanism, the slopes decrease slightly as the concentration increases
and are very different for the two polarizations. Here again, the slopes are almost identical
for xx-BPOL for BP networks and DLCAs.

It might be interesting to compare the results obtained with the DLCA model and the
experimental results on silica aerogels. First, we note that, for DLCAs, the DOS of fractons
in the low-frequency region is governed by a spectral dimensionD̃ ≈ 0.9 which is close
to that measured in base-catalysed silica aerogels, which are characterized by a fractal
dimensionD ≈ 1.70–2.00. Second, the depolarized Raman scattering intensity was found
to scale withν ≈ −0.79 via the DID mechanism. This value agrees with the measured
ν-value of about−0.72 to−0.85 for the depolarized scattering from the basic aerogels in
the very-low-frequency region (Vacheret al 1990, Anglaretet al 1994). This supports the
fact that the DLCA is a good model for basic aerogels, as we mentioned in previous studies
(Hasmyet al 1994, Rahmaniet al 1996).

In conclusion, taking into account the vectorial nature of interactions, we have shown
that the DID mechanism applied to the DLCA model gives a good description of Raman
scattering in base-catalysed silica aerogels. It would be interesting to extend the present
study to other scattering mechanisms, such as the Pockels mechanism, to see whether the
results are similar or not. We hope that these numerical probes with tensorial elasticity
interactions will provide a basis for a new theoretical development on Raman scattering in
fractal systems.
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